人民網首頁人民網首頁傳媒頻道|人民網研究院

--2018清華大學計算機系篇

獲獎名單

2018人民網獎學金獲獎名單:
鄧理睿、孫曉晴
2018人民網優秀論文獲獎者名單:
一等獎:吳成磊;賈許亞;何東標;李峻峰
二等獎:馬騰

往年獎學金獲獎論文回顧:

2017清華計算機系篇
2016清華計算機系篇
2015清華計算機系篇
2014清華計算機系篇
2013清華計算機系篇
2012清華計算機系篇

優秀論文一等獎(4)

吳成磊

基於主動視場預測的全景視頻傳輸優化
為了緩解全景視頻傳輸所需的巨量的帶寬需求,基於切片 (tiling)的傳輸解決方案將equirectangular 格式的全景視頻切分成若干個小塊(tile),用於單獨編碼和傳輸,以便用戶充分利用有限的帶寬,選擇性地下載覆蓋用戶視場(field of view,FOV)所需的視頻塊。然而以前的方法並沒有解決如何從服務器向客戶端有效傳送全景視頻切片的問題,其中主要存在兩個主要問 題:i)無法預測長期,較遠未來的用戶的視場,導致無法預取切片以應對網絡狀況波動不穩定ii)基於瞬時運動狀態的視場預測不准確,無法處理隨機和快速的頭部運動。 本文提出了一個注意力驅動的預取框架來回答這些問題。本文首先搜集了用戶觀看全景視頻時的用戶行為數據集,進行了全景視頻中用戶注意力模型的測量實驗,針對用戶注意力在觀看不同視頻內容時存在的不同行為模式,我們提出了一個基於主動長期和短期視場預測的全景視頻預取方案。我們重新設計顯著性預測網絡RMDN,利用深度學習網絡的時空視覺偏好提取和循環預測能力來實現高達 10 秒的長期視場預測,並且採用並微調了一個卡爾曼濾波器來提高基於速度的短期視場預測的准確性。為了結合基於深度學習的長期預測和基於去噪后的運動狀態的短期預測,我們將預取過程建模為有限狀態機,設計了一個自適應的預測策略,以便在切片預取期間實現聯合的 “長期-短期” 聯合預取以及簡化的異常處理,達到高效利用可用帶寬,實現提供高 QoS 流的同時,最小化切片缺失率。模擬實驗驗証了設計的有效性:與傳統解決方案相比,本文的系統節省了高達 74.9% 的帶寬,同時保持切片缺失率低於 4.5%。
詳細 >>

賈許亞

Intelligent path control for energy-saving in hybrid SDN networks
As power consumption of the internet has been growing quickly in recent years, saving energy has be- come an important problem of networking research. Software-Defined Networking (SDN) brings excellent opportunities to improve network performance and reduce energy consumption by flexible centralized control. However, due to budget constraints and technique limitations, ISPs can upgrade only a limited number of conventional switches in backbone networks to SDN devices at one time. In this paper, we propose one heuristic scheme for incrementally deploy SDN switches in hybrid SDNs, the objective of which is to achieve energy saving by rerouting the flows to shut down idle links and switches as many as possible. Our solution can achieve two objectives: 1) maximizing the network control ability with a given SDN switches upgrading budget constraint, and 2) maximizing energy saving by shutting down idle links and switches with deployed SDN switches. The results of evaluations show that our scheme can achieve 95% of the number of flows controlled with only 10% of upgrading cost, and it also can achieve saving more about 10% of the total power consumption when compared to the existing solutions.
詳細 >>

何東標

基於網絡時延的360全景視頻傳輸算法研究
近年來,AR/VR應用,尤其是360全景視頻,在學術界與工業界得到了廣泛的關注。當應用360全景視頻流時,網絡的響應性是決定用戶體驗的重要因素,即視頻流在傳輸中花費的時間將顯 著影響最終用戶的QoE。然而,針對360全景視頻,用戶每次的觀察范圍是相對有限的,即稱之為視場(FOV),因此,發送全方位各角度的360 全景視頻流顯著增加了帶寬使用。本文提出了一種利用網絡的響應性進行視場自適應的機制,在降低帶寬消耗的同時提高用戶的QoE。實驗結果表明,這樣的機制通過選擇更高的比特率,顯著地改善了終端用戶所看到的視頻分辨率。與完整傳輸360全景視頻流相比,使用自適應FOV機制使得分辨率提高了1.34 倍。此外,該方法提出了速率控制方法確保終端用戶的QoE 根據網絡條件的變化而穩定變化。這意味著,我們提出的基於網絡響應性的視頻分辨率和FOV自適應匹配機制,實現了增加用戶QoE和充分利用網絡資源這兩個相互矛盾的目標。
詳細 >>

李峻峰

Quick NAT: High Performance NAT System on Commodity Platforms
NAT gateway is an important network system in today''''s IPv4 network when translating a private IPv4 address to a public address. However, traditional NAT system based on Linux Netfilter cannot achieve high network throughput to meet modern requirements such as data centers. To address this challenge, we improve the network performance of NAT system by three ways. First, we leverage DPDK to enable polling and zero-copy delivery, so as to reduce the cost of interrupt and packet copies. Second, we enable multiple CPU cores to process in parallel and use lock-free hash table to minimize the contention between CPU cores. Third, we use hash search instead of sequential search when looking up the NAT rule table. Evaluation shows that our Quick NAT system obtains very high scalability and line-rate throughput on commodity server, with an improvement of more than 860% compared to Linux Netfilter.
詳細 >>

優秀論文二等獎(1)

馬騰 何東標

一種基於RDMA的雲存儲系統設計模式
本論文提出了一種新型的RDMA設計模式,涉及雲存儲系統的遠程數據獲取設計模式,通過該設計模式優化雲數據中心的服務端,最終加速系統雲存儲系統,提高網絡應用程序性能。
詳細 >>